
[Kaitlin start]

Hello everyone. My name is Kaitlin Newson, and I’m joined by my coworker Bart
Kawula from Scholars Portal.

As many of you will know, there’s more to hosting technology than just putting it on a
server. Today we’re going to talk about our experiences with growing a sustainable
publishing technology service for libraries.

Our hope with today’s talk is to reflect on what goes into technology hosting for
publishing services, the workflows we’re using, how we make certain decisions, and
ultimately the best practices we can work towards with the resources that we have.

First, a bit of background on our publishing services.

Scholars Portal is the technology service arm for the Ontario Council of University
Libraries, an academic library consortium representing 21 universities across Ontario.

The Public Knowledge Project, or PKP, develops open-source publishing software.

2 of the applications that PKP develops are Open Journal Systems, or OJS, which is
a journal management and publishing software, and Open Monograph Press, or
OMP, which is a monograph publishing software.

At Scholars Portal, we provide a subscription-based hosting service for OJS and
OMP to Ontario universities.

Our hosting service began in 2012 and has grown to 12 universities across Ontario
which collectively host over 150 journals. We host and manage the software on behalf
of university libraries, who then run their own individual library publishing programs.
Each institution has its own instance of the software.

The service is supported by myself, Bart, and a systems support specialist.

Along with hosting software, the service includes troubleshooting and technical
support, sponsored CrossRef memberships for DOI minting, hosted Matomo analytics
(an alternative to Google Analytics), preservation of journals in the Scholars Portal
Trusted Digital Repository, as well as options for theming and customizations.

Over the last 9 years of the service, we’ve gradually grown from 1 to 12 institutions
that we host publishing software for.

As the service has grown, we’ve had to find ways to ensure that we find a balance
between doing things sustainably, providing good service to libraries and end-users
with varying needs and resources of their own, and managing the workload of our
team alongside other projects. One way we do this is by leveraging different
technologies to support scaling our service, which is critical when our service needs
grow but the number of people working on the service doesn’t.

We’ve made use of a number of tools to help us as we scale our service, including
tools that help us in the most time-consuming part of the service: client support.

[Bart start]

Client support is what takes up most of our time when it comes to our publishing
services and its become the most critical component of what we do.

When we started hosting we were expecting to only take care of software and
maintenance, but as we acquired new members we found that there's a whole layer
of technical support around making the software do what the user needs it to do,
rather than just using it the way it's intended to be used. Over the years it's become
apparent that for technology to be fully utilized there needs to be a strong support
component because the more journals that are added to each instance the more the
need for client support grows.

Like in most library IT departments no one person does one thing. People get spread
across projects in order to create redundancy, which is critical for providing scalable
client support.

Since Kaitlin joined our team we've been better able to balance our publishing efforts
with our other work responsibilities. From a practical point of view this means that we
can answer most support queries within the same business day.

Typically when an email comes in we use our internal chat system to decide who can
do what based on current workloads. Support requests can range widely from simple
interface or workflow question that require a few minutes to answer to more involved
systems level issues that can take days to resolve.

As you can see, time and its constraints are the main thing for us when dealing with
client support, which is why we try to track it. We use the built in time logging features
for JIRA. For those of you who aren't familiar with JIRA, it's a ticket management
system that also works as a project management tool.

So everytime we answer an email we log the work we do associated with that
request, with both a description and the time spent. It's very tedious, but it's critical for
determining the amount of resources you devote to something and when you have
solid numbers you can critically evaluate the sustainability of what it is that you do.

Using a full years worth of work logs we were able to see that the amount of time we
were putting into our publishing services work wasn't being recouped by the $2,500
dollar annual fee, which was a bit of an arbitrary figure to begin with because we
weren't sure of the real costs of running the service when we started. Given our data
we saw that we needed at to cover at least one half time position. We debated
various pricing models including charging hourly in addition to our base fee, but
managing billable hours can get messy and we noticed that there was a strong
correlation between the number of journals a library supported and the amount of
support hours dedicated to that instance.

In the end we went with a base price plus number of journals approach, which we
proposed to our members and nobody seemed bothered by it because we were able
to show exactly how much work goes into sustaining the service for each member.

Working with our members is our main focus and we enjoy developing our
relationships with them. Each of our relationships is unique and we like to think that
we offer a bespoke level service geared to the specific needs of each library. But, as
membership grows, as well as the number of journals each member hosts, it’s
become important to have clearly defined roles and responsibilities for everyone
involved.

It’s important to establish the roles early on and clarify who is responsible for what
because defining roles is easy, but redefining roles is hard. For example, we’ve had
cases where editors will start to contact us directly for support and it can be hard to go
back. Sometimes it easier to just work with the editors directly, but it sets a bad
precedent because we simply wouldn't be able to handle that amount of support work.
This is why we insist on only working with scholarly communications librarians who do
the remarkable job handling all of the training, journal setup and management
aspects of publishing while we support them on the systems side. Nevertheless
situations arise where the librarian we work with goes on leave or moves to a new
position and there's a gap in service. In those situations we do offer to work directly
with the journals with the understanding that it's only temporary.

One of the best things about working with OJS and open source software in general is
the community. We encourage our members to get involved in the broader journal
hosting community with things like mailing lists, slack channels, and forums. We don’t
always have the answer to questions that come up, especially because we don’t
typically work with editors or within the editorial process, so involvement in these
communities is important. Nothing makes me happier than getting an email identifying
a bug that includes the forum thread discussing the issue AND the github pull request
for fixing it.

And now since we're on the topic of fixing code, let's segue into code management.

Code management

When thinking about code updates, we work closely with institutions and monitor the
latest developments from PKP so we can make judgment calls about when to
upgrade.

Some things that we think about include: are there security issues? What are the new
features? is it a minor release? Or are there known bugs in the current release?

If it's a security issue we obviously prioritize that immediately, but minor bugs we tend
to fix on an as per need basis. Often times if something comes up and there's a patch,
we'll just patch the reporting instance because those fixes will most likely be in the
next code update. When it comes to major release updates each member is different.
Some might be eagerly waiting on new features while others like wait a few months
because they might not want to potentially disrupt a busy editorial cycle. From
experience we like to wait too because there's always a few kinks that quickly get
fixed after each major release, but again if a member is eager then we work with their
needs.

At the moment each of our members has their own code repository because of the
inevitable code customizations that have accumulated over the years. This means
that updating code has been a manual process where we pull from PKP and merge
local changes into our repos because it preserves all of the customizations. With 12
instances this takes a bit of time and so with our latest upgrade from version 3.1.2 to
3.3 we're finally moving to a single code base shared by all of the instances. This is
no simple feat and it's taken us years to get to a point where everyone can use the
same codebase.

Sometimes institutions will request code customizations for their instances. In the past
we allowed for most customizations requested, but as the service has grown
managing these has been challenging. It’s important to remember that every code
customization has a cost associated with it when we’re upgrading because we need
to re-apply or merge these changes with each upgrade.

With all of that in mind, we’re trying to rethink how we handle customizations. Some of
the things that we think about include:

Could this be useful to the larger project community? Can we submit this back to the
main project?

How large of a change is this? Can it be contained within a custom theme plugin?

And finally, does it create technical debt? Technical debt is essentially kicking the can
down the road where easy fixes today become a burden in the future.

And now Kaitlin will be discussing the nitty gritty details of how we deploy our code in
our next section on Environments and Deployment.

Environments and deployment

[kaitlin start]

In the past we used to do our test upgrades locally, but as the service has grown we
can’t always do this on our own machine -- some of the reasons that this can be
challenging include the sizes of files on each instance which are too large for a small
laptop hard drive, and the length of time that an upgrade can take to run, which
requires a more reliable environment than a 2015 macbook.

A development environment allows us to test upgrades more easily, and to open
testing to users before updating production - this is especially valuable when a new
version of the software is released that introduces major changes to the user
experience. This is also a space for each institution to work on custom developments
in an environment that mimics their production space.

One thing to note is that you have to make sure to set up the development
environment properly; this means things like turning off system emails, making sure
no data is being sent out, and ideally limiting the environment to certain IP addresses
so users don’t find it accidentally and it isn’t crawled by other websites.

When we migrated to OJS 3 we made our production environment more efficient by
moving from individual servers for each instance to a shared server, which works for
OJS because it’s not that resource intensive from a technical perspective. By moving
to a single server, we removed the need to manage 12 servers for the service and
reduced the maintenance workload for our systems team. It also ensures that we
don’t have differences between servers that can cause issues, like a package that’s

been installed in one server but not another.

This is a snapshot of our deployment documentation for OJS. In the past we’ve relied
on lengthy documents that outline different steps in the upgrading process - this
process may be familiar to you if you’ve been responsible for managing hosted
software. This document outlines all of the different commands that we ran to upgrade
OJS on a production server, and has many more steps beyond what’s in this
screenshot.

The problem with this process is that it’s prone to human error, as it can be easy to
enter a command incorrectly or miss a step. While we have backups in place, it adds
a lot of time to the process if we need to restore something and is tedious and time-
consuming to do multiple times. To improve on this process, we’ve started using a
tool called Jenkins.

Jenkins is an open source automation server for deploying code and automating
tasks. At Scholars Portal we host Jenkins and use it to across many of our
applications, and have started to use it with OJS.

This is a screenshot of the jenkins interface, with a list of different jobs we have
available in the system. Each job represents a script that strings together different
commands. Jobs perform different functions, like deploying code to a server or
running a script to download data. Without a tool like this, someone would have to run
various commands individually, and the process would be more time-consuming and
prone to human error. Jenkins provides a number of other valuable features, like
scheduling jobs to run at certain times and rolling back to a previous version when
there’s an error.

In this screenshot of our Jenkins workflow for our development environment in OJS,
we have a drop-down menu that allows us to select which school’s instance we’re
upgrading. We can then enter the code branch, in this case for version 3.1.2. We
have a checkbox for pulling in the latest database from our production environment,
and another for if we want to run the upgrade script.

We’re currently only using this in our development environment, but we hope to roll
this out to our production environment after we test it out further with our next
upgrade. While this change might seem minor at first glance, it will save us a
significant amount of time when we have to upgrade our OJS instances. Instead of
running a series of commands 12 different times, we can do the same series of tasks
with a few clicks on a form.

The last topic we’d like to touch on is getting involved in the larger project or
community of your service. In order to grow services that are built on an open source
code, it’s vital to give back to that project when and if you can. Giving back to the
open source software that we build our services on both helps our own users and
builds on the sustainability of the software for the long-term. Many open source
projects are facing their own challenges with limited resources.

In the case of our publishing services at Scholars Portal, this means finding ways to
contribute back to PKP and the user community.

This can include things like:

- participating in the PKP forums to help other community members
- contributing code or documentation back to the project, especially when our

users find bugs that we can resolve
- being involved in working groups and communities; for instance, we’re

involved in PKP’s documentation and metadata groups
- contributing financially back to PKP - thankfully many institutions in Ontario

have been willing and able to contribute to PKP financially; this can also give
us more opportunities to advocate for our community’s needs

- Finally, another way we can support scaling scholarly infrastructure is by
supporting broader initiatives in this space, like the Library Publishing
Coalition

- Another example is the Invest in Open project, is “an initiative
dedicated to improving funding and resourcing for open technologies
and systems supporting research and scholarship.” The Invest in Open
Infrastructure is one example of how we can broadly support efforts
towards more sustainable and scalable scholarly infrastructure.

That brings us to the end of our talk. If you’d like to contact us, you can email us at
ojs@scholarsportal.info.

